

Семинар ТО ИЯИ по программированию 2012-10-30

Транспортные коды и некоторые их приложения

Н.М.Соболевский,

Институт ядерных исследований РАН, 117312 Москва

- 1.Универсальные транспортные коды, сколько их и что они делают.
- 2.Спектрометры по времени замедления в свинце (СВЗ). Принцип работы СВЗ. Моделирование СВЗ-100 ИЯИ РАН. Все ли ясно с нейтроном?
- 3.Accelerator Driven Systems (ADS) для энергетики. "Релятивистская тяжелоядерная энергетика" what it is and why it is wrong.
- 4. Моделирование и анализ дозовых полей в адронной терапии. Пик Брэгга "так же неисчерпаем, как и атом".

1. Multipurpose Monte Carlo transport codes (sorted by year of appearance)

SHIELD <u>http://www.inr.ru/shield/</u> Hadron version (1970)→Heavy Ion transport version (1997) "Heavy Ion Therapy" – SHIELD-HIT (2001)

FLUKA <u>http://www.fluka.org/</u>

Inclusive version (1974), Exclusive version (1992)

MARS <u>http://www-ap.fnal.gov/MARS/</u> Inclusive version (1974), Exclusive version (2007)

PHITS (2003) <u>http://phits.jaea.go.jp/</u> (Particle and Heavy Ion Transport System) 2. Спектрометры по времени замедления в свинце (СВЗ). Принцип работы СВЗ. Моделирование СВЗ-100 ИЯИ РАН. Все ли ясно с нейтроном?

Н.М.Соболевский. *TOF2SVZ* – программа пересчета нейтронных сечений, измеренных с высоким разрешением, к разрешению спектрометра по времени замедления в свинце. Препринт ИЯИ РАН 1319/2012.

Л.Н.Латышева, А.А.Бергман, Н.М.Соболевский, Р.Д.Илич. О влиянии размеров экспериментальных каналов спектрометра по времени замедления в свинце СВЗ-100 ИЯИ РАН на константу замедления. Принято в ЯФ.

Спектрометр по времени замедления в свинце СВЗ-100 ИЯИ РАН

Средняя энергия нейтрона <E> в момент времени t:

$$\langle E \rangle = A/(t+\tau)^2$$

t – время замедления в мкс; А≈160÷190 кэВ⋅мкс² - константа замедления; τ≈0.3 мкс – параметр, учитывающий сброс энергии в неупругом рассеянии.

 $(E - \langle E \rangle)^2$ <Е>, эВ f(E) =10⁵ 0.30 $\langle E \rangle = A/(t+\tau)^2$ 10⁴ 0.25 10³ 0.20 10² 0.15 $FWHM = 2\sqrt{2\ln 2}\sigma$ 10¹ 0.10 ≈ 2.35**σ** 10° 0.05 10⁻¹ 0.00 E, eV 10 12 13 7 8 9 11 10 100 1000 t. мкс 6

Первый в мире CB3 был создан в ФИАН им. П.Н.Лебедева в 1953 году с источником нейтронов на основе T(d,n)⁴Не реакции.

Л.Е.Лазарева, Е.Л.Фейнберг, Ф.Л.Шапиро. *Нейтронная спектрометрия, основанная на измерении времени замедления нейтронов*. ЖЭТФ **29** (1955) 381. **М.В.Казарновский**. *Теория нестационарного упругого замедления нейтронов в тяжелой*

среде. Труды ФИАН, т. 11, (Наука, Москва, 1959), с. 176.

Разрешение CB3, т.е. отношение полуширины Гауссового спектра к средней энергии *R=FWHM/<E>,* около 30% (min 26%). Связь величин R, <E> и σ:

 $\sigma \approx (R/2.35) \cdot \langle E \rangle$

Сечение реакции ²³⁵U(n,f), измеренное с высоким разрешением и гауссовские спектры нейтронов при разрешении R=26%

7

Сечение реакции ²³⁵U(n,f), измеренное с высоким разрешением и это же сечение, измеренное на СВЗ при разрешении R=26%

8

Компьютерная модель СВЗ-100 ИЯИ РАН на основе кода MCNPX, v. 2.5.0

Размеры даны в сантиметрах, указана средняя плотность свинца. а – вид по направлению пучка, б – вид сверху, р – пучок протонов. Цифры 1÷5 нумеруют экспериментальные каналы. Детектирующие объемы при оценке потоков нейтронов методом Track Length Estimation

Сферы радиусом R=2, 3.25, 5, 10 и 13 см в позиции реальных детекторов. Экспериментальные каналы не вводились. Заполнение сфер – воздух и свинец.

Экспериментальный канал радиусом R=3.25 см, заполненный воздухом, с детектирующей сферой R=3.25 см в позиции реальных детекторов.

Регистрация производится в заданном малом объеме ΔV , в заданном энергетическом интервале ΔE_n и в заданном интервале Δt времени блуждания нейтрона t ($\Delta t \ll t$), т.е. трижды дифференциальная регистрация. Для улучшения статистической точности надо увеличивать ΔV , ΔE_n и Δt . Однако это может приводить к систематическим ошибкам.

Спектры нейтронов в канале №3 в разные моменты времени замедления. Детектор – сфера R=10 см.

Примеры фитирования спектров программой DataFit. Канал №3, детектор – сфера R=10см, t=20, 60,100 и 200мкс

Константа A как функция времени замедления, в каналах №3 и 4, при разных детекторах

Константа A как функция радиуса детектора r, канал №3, время замедления t=100 мкс

Разрешение R как функция времени замедления, канал №4

ЗАКЛЮЧЕНИЕ

1. На основе транспортного кода MCNPX разработана процедура моделирования дифференциальных по энергии потоков нейтронов в спектрометре CB3-100 ИЯИ РАН в реальной геометрии под действием пучка протонов.

2. Вычислена константа замедления A и энергетическое разрешение R во всех измерительных каналах спектрометра как функция времени замедления.

3. Выявлено влияние размера и формы детекторов на константу замедления А спектрометра СВЗ-100. При моделировании необходимо точно воспроизводить детали геометрии экспериментальных каналов.

4. Созданная компьютерная модель открывает возможность изучения влияния на параметры спектрометра различных факторов: окружающей биологической защиты, наличия влаги в щелях между блоками свинца, качества пучка протонов и наличия в нем нейтронного гало и т.п.

3. Accelerator Driven Systems (ADS) для энергетики. "Релятивистская тяжелоядерная энергетика" - what it is and why it is wrong.

А.В.Воронков, Н.М.Соболевский. *Взаимодействие пучка протонов с массивной свинцовой мишенью при энергиях до 100 ГэВ.* Препринт ИПМ им. М.В.Келдыша, № 78, Москва, 2000.

В.Ф.Батяев, М.А.Бутко, К.В.Павлов, А.Ю.Титаренко, Ю.Е.Титаренко, Р.С.Тихонов, С.Н.Флоря, Б.Ю.Шарков, Н.М.Соболевский, В.Е.Фортов, Н.Н.Пономарев-Степной. *Анализ основных ядерно-физических особенностей взаимодействия протонных пучков с тяжелыми металлическими мишенями.* Атомная Энергия **104** (2008) 242.

Общепринятая концепция производства энергии с использованием ADS предполагает, что энергия сильноточного пучка протонов равна ~1 ГэВ, а мишенная станция содержит хорошо делящиеся материалы (²³⁵U, ²³⁹Pu) при концентрации несколько процентов, что обеспечивает коэффициент умножения энергии 30-40.

В России пропагандируется другая концепция, согласно которой можно использовать в мишени плохо делящиеся материалы (Th, ^{dep}U и даже свинец) благодаря "высокоэнергетическому делению", если поднять энергию пучка протонов до 10-50 ГэВ (т.н. «Релятивистская Тяжелоядерная Энергетика», «Ядерные Релятивистские Технологии (ЯРТ)»: http://www.ng.ru/energy/2006-12-12/12 greentech.html http://www.ng.ru/energy/2006-12-12/12 greentech.html http://www.sa-nauku.ru/index.php?option=com_content&task=view&id=2233&Itemid=36 Балдин А.А., Белов Е.М., Галанин М.В. и др. Письма в ЭЧАЯ, 8 (2011) 1007.

При этом утверждается, что транспортные коды дают неверные результаты.

Целью настоящего доклада является демонстрация недостаточного для практического применения эффекта умножения энергии пучка в ЯРТ (торий, обедненный уран), или его полное отсутствие (свинец). Высокоэнергетическое деление дает незначительный вклад в энерговыделение в мишени на фоне ионизационных потерь и, тем более, по сравнению с вкладом от деления ²³⁵U, ²³⁹Pu нейтронами низкой энергии.

A.V.Dementyev, N.M.Sobolevsky, Yu.Ya.Stavissky. NIM A374 (1996) 70

Верификация кода SHIELD: тепловыделение

Калориметрический эксперимент ИТЭФ. Мишень: Ø20см, L=60см. V.I.Belyakov-Bodin et al, NIM **A295** (1990)140. В.И.Беляков-Бодин и др, АЭ **70** (1991) 339.

Верификация кода SHIELD: активация

Эксперимент ИТЭФ, 2006 Ю.Е.Титаренко и др.

Мишень Рb, ∅15см, L=92см Энергия протонов 800 МэВ

Пороговые активационные детекторы, γ-спектрометрия Скорости образования:

- о на оси мишени
- на поверхности мишени
 расчет SHIELD

Verification of SHIELD for ion beams

Verification of Monte Carlo transport codes FLUKA, Geant4 and SHIELD for radiation protection purposes at relativistic heavy ion accelerators.

L.Beskrovnaia et al. NIM **B266** (2008) 4058

<u>Exp1</u>: O.Yordanov et al. NIM **B240** (2005) 863.

Exp2:K.Gunzert-Marx et al. Proc. PoS (FNDA2006) 57, Cape Town Univ., Apr.2006

Verification of SHIELD and PHITS

Neutron spectra at irradiation of various materials by C and Ne ions with energy 290-600 M₃B/A

L.Heilbronn et al. Phys. Rev. C74 (2006) 024603.

Мощность потребителю как функция энергии пучка протонов

$$W_{user} = W \left[1 - \frac{1}{K_{mult} \eta_{ac} \eta_{ADS}} \right]$$

W_{user} – мощность, выдаваемая потребителю *W* – электрическая мощность установки (*W*=1 ГВт) *K_{mult}* – коэффициент умножения энергии *η_{ac}* – КПД ускорителя (*η_{ac}* = 0.2) *η_{ADS}* – КПД преобразования тепла в электричество (*η_{ADS}* = 0.4)

Минимальный коэффициент умножения энергии, при котором *W*_{user} > 0

$$K_{mult} = \frac{1}{\eta_{ac} \eta_{ADS}} = \frac{1}{0.2 \times 0.4} = 12.5$$

Сечения деления тяжелых ядер нуклонами убывают с ростом энергии

Групповые сечения деления используемые в коде SHIELD

A.V.Prokofiev. Compilation and Systematics of Proton-Induced Fission Cross-Section Data. NIM **A463**(2001)557.

Выводы

1. Применение электроядерных установок (ЭлЯУ) для производства электроэнергии предполагает достижение коэффициента усиления энергии протонного пучка в бланкете установки не ниже K_{mult} = 30-40. Для получения такого коэффициента усиления требуется обогащение бланкета ЭлЯУ хорошо делящимися изотопами на уровне 6%. При этом энергия протонного пучка не должна превышать 1-3 ГэВ.

2. Попытки обойтись без использования обогащенных делящихся материалов за счет повышения энергии протонов до 10-50 ГэВ несостоятельны. В таких средах как торий или обедненный уран коэффициент усиления энергии не превышает значение K_{mult} = 3-4 при любых энергиях протонного пучка, т.е. совершенно недостаточен. Положительный энергетический выход при использовании свинца вообще отсутствует.

3. Энерговыделение в бланкете ЭлЯУ происходит за счет деления хорошо делящихся изотопов (²³⁵U, ²³³U, ²³⁹Pu) низкоэнергетическими нейтронами (E_{fiss<14}). Доля энергии, выделяющейся за счет деления ядер быстрыми каскадными частицами, незначительна. Повышение энергии пучка протонов снижает коэффициент умножения энергии.

Энергетическая стоимость Q одного нейтрона для пучков разных ионов

Д.Г.Кошкарёв, Н.М.Соболевский, А.В.Бархударян. *Использование электро-ядерного метода в энергетике*. Атомная Энергия **105** (2008) 173.

4. Моделирование и анализ дозовых полей в адронной терапии. Пик Брэгга "так же неисчерпаем, как и атом"

Профиль энерговыделения в воде разных видов излучения

Идея протонной терапии - Robert Wilson. R.R.Wilson. *Radiological use of fast protons.* Radiology **47** (1946) 487.

В настоящее время в мире существует около 40 центров адронной терапии и еще несколько центров строится

- and the provide											
Who/Where	Country	Energy (MeV)	Energy (MeV) Beam direction Start Patier		Patients	Date of total					
Protons, 35 centers											
ITEP, Moscow	Russia	Synch. 250 H (horizontal) 1		1969	4246	12/2010					
Loma Linda	USA	S 250	3Gantry+1H	1990	15000	01/2011					
Orsay	France	Cycl. 230	1G+2H	1991	5634	12/2011					
PSI, Villigen	Switzerland	C 250 1G+1H		1996	1107	12/2011					
Ions ¹² C ⁺⁶ , six centers											
HIMAC	Japan	S 800/u	H,V (vertical)	1994	6569	12/2011					
HIBMC	Japan	S 320/u	H,V	2002	788	12/2011					
GHMC	Japan	S 400/u	3H+1V	2010	271	12/2011					
HIT, Heidelberg	Germany	S 430/u	1G+2H	2009	568	12/2011					
IMP, Lanzhou	China	S 400/u	Н	2006	159	12/2011					
CNAO, Pavia	Italy	S 430/u	S 430/u 3H+1V		5	12/2011					
Total 77191											

Particle therapy centers currently in operation (http://ptcog.web.psi.ch/ptcentres.html)

Адронная терапия до двух раз и более результативнее конвенциональной терапии и может быть единственным методом по некоторым заболеваниям

Потребность в адронной терапии оценивается до 1,000 пациентов в год на 10,000,000 населения

Стоимость полномасштабного центра адронной терапии оценивается в €100 миллионов (HIT, Heidelberg, €78 миллионов)

Стоимость лечения одного пациента €10,000–20,000 (\$100,000 в США)

Loma Linda University Proton Treatment Center, California, USA

Heidelberg Ion Therapy Center, Germany http://www.youtube.com/watch?v=LeApaY7ctMo

The GSI Pilot Project

Patient immobilization

Operating control of the GSI raster scanning system

Experimental Therapy Room at GSI, Darmstadt, Germany

Passive beam modulation

Slices of a tumor treated at GSI

Up to 254 energies between 85 and 430 MeV/u of C12 ion

Professional, domestic and therapeutic dose

where: D – absorbed dose

K – dimensionless quality factor (1 < K < 20)

Equivalent dose H is measured in Sieverts (Sv): 1 Sv = 1 Gy/K

Impact of radiation on human being

Relative Biological Efficiency

Quantity	Value		
Occupational dose limit	50 mSv/year (14–28 µSv/h)		
Professional exposure	5-15 mSv/year		
Absolute prohibition for working	\geq 3 mSv/h (26 Sv/year)		
50% chance of survival at a single exposure	3.5 Sv		
Negligible dose rate	$\leq 0.3 \mu \text{Sv/h}$ (2.6 mSv/year)		
Natural background from all sources	1 mSv/year		
including cosmic ray background	0.3 mSv/year		
Dose at hadron therapy	up to 60 Gy (2 Gy×30 sessions)		
Power of a proton beam (kW)	$P(kW) = E(MeV) \times I(mA)$		
Current of therapeutic beams	~1 nA		

Stopping Power (STP) and Linear Energy Transfer (LET)

The Bragg curve in water target: SHIELD-HIT simulation

Decomposition of the Bragg curve according to Linear Energy Transfer (LET)

In the context of hadron therapy LET is equivalent to Stopping Power: LET=STP.

User of the SHIELD-HIT code can define intervals of LET for decomposition on his discretion.

for water (ρ=1g/cm³): 1 eV/nm= 10 MeV/cm= 10 MeV/(g/cm²)

Stopping power of water for various particles/nuclei.

Proton 202 MeV in water. Decomposition of the Bragg curve on LET.

¹²C(391MeV/u) in water. Decomposition of the Bragg curve on LET.

 $^{12}C(391MeV/u)$ in water. Decomposition of the contribution of ^{11}C -fragment on LET.

References on application of the SHIELD-HIT code in hadron therapy and around

- 1. I.Gudowska, N.Sobolevsky, P.Andreo, Dž.Belkić, A.Brahme. *Ion Beam Transport in Tissue-Like Media Using the Monte Carlo Code SHIELD-HIT.* Phys.Med.Biol. **49** (2004) 1933.
- I.Gudowska, J.Kempe, N.Sobolevsky. Low- and High LET Dose Components in Carbon Beam. Radiation Protection Dosimetry 122 (2006) 483.
- 3. O.Geithner, P.Andreo, N.Sobolevsky, G.Hartmann, O.Jaekel. *Calculation of Stopping Power Ratios for Carbon Ion Dosimetry*. Phys.Med.Biol. **51** (2006) 2279.
- 4. L.Heilbronn, Y.Iwata, H.Iwase, T.Murakami, H.Sato, T.Nakamura, R.M.Ronningen, K.Ieki, I.Gudowska, N.Sobolevsky. *Secondary neutron-production cross sections from heavy-ion interactions in composite targets.* Phys. Rev. **C74** (2006) 024603.
- 5. I.Gudowska, M.Kopec, N.Sobolevsky. *Neutron Production in Tissue-Like Media and Shielding Materials Irradiated with High-Energy Ion Beams.* Radiation Protection Dosimetry **126** (2007) 652.
- 6. N.Sobolevsky. *Monte Carlo simulation in hadron therapy: interaction of ion beam with biological tissue.* Invited Talk at the NUFRA2007 International Conference, Kemer, Turkey, September 25-30, 2007.
- 7. M.Hollmark, I.Gudowska, Dž.Belkić, A.Brahme, N.Sobolevsky. An Analytical Model for Light Ion Pencil Beam Dose Distributions: Multiple Scattering of Primary and Secondary Ions. Phys.Med.Biol. 53 (2008) 3477.
- 8. K.Henkner, N.Bassler, N.Sobolevsky, O.Jäkel. *Monte Carlo Simulations on the water-to-air stopping power ratio for carbon ion dosimetry.* Medical Physics **36** (2009) 1230.
- 9. K.Henkner, N.Sobolevsky, H.Paganetti, O.Jäkel. *Test of the nuclear interaction model in SHIELD-HIT and a comparison to energy distributions from GEANT4.* Phys. Med. Biol. **54** (2009) N509.
- 10.A.Lühr, D.C.Hansen, O.Jäkel, N.Sobolevsky, N.Bassler. *Analytical expressions for water-to-air stopping-power ratios relevant for accurate dosimetry in particle therapy.* Phys. Med. Biol. **56** (2011) 2515.
- 11.A.Lühr, D.C. Hansen, N.Sobolevsky, H.Palmans, S.Rossomme, and N.Bassler. *Fluence Correction Factors and Stopping Power Ratios for Clinical Ion Beams.* Acta Oncologica **50** (2011) 797.
- 12. D.Hansen, A.Lühr, R.Herrmann, N.Sobolevsky, N.Bassler. *Recent Improvements in the SHIELD-HIT Code.* International Journal of Radiation Biology, **88** (2012) 195.
- 13.M.Hultquist, M.Lazzeroni, A.Botvina, I.Gudowska, N.Sobolevsky and A.Brahme. *Evaluation of nuclear reaction cross sections and fragment yields in carbon beams using the SHIELD-HIT Monte Carlo code. Comparison with experiments.* Phys.Med.Biol. **57** (2012) 4369.
- 14. D.Hansen, A.Lühr, N.Sobolevsky, N.Bassler. Optimizing SHIELD-HIT for carbon ion treatment. Phys.Med.Biol. 57(2012)2393.
- 15. A.Lühr, D.Hansen, R.Teiwes, N.Sobolevsky, O.Jäkel and N.Bassler. *The impact of modeling nuclear fragmentation on delivered dose and radiobiology in ion therapy.* Phys.Med.Biol. **57** (2012) 5169.

etc.

Memorizing of the cascade tree in the SHIELD code

The cascade tree consist of the branches.

Each branch includes:

- •Unique number of the branch.
- Projectile at start and at finis of its range.
- Nucleus-Target, if any
- •Products: particles and fast fragments (rays)
- •Slow target-like fragments (may be converted to the rays if E>cut)

Absorbed rays, decayed rays, and flied out rays constitute separate branches.

Each particle/fragment (ray) is identified with its type, (X,Y,Z), direction, E, weight.

Each ray knows its branch number, its generation number and parent projectile as well as the state at the end point (interaction, decay, etc.).

Each ray is memorized on the background of the target geometry and composition: Step#3

(Neutrons below 14.5 MeV are transported separately)

Balance of energy at interaction of ${}^{12}C(391 \text{ MeV/u})$ with water target $\emptyset 20 \times 40 \text{ cm}$. Total energy contribution into the target is equal $391 \times 12 = 4692 \text{ MeV}$

Particle/	Energy deposition		Leakage from the target			
Fragment	MeV/Proj	%	Frags/Proj	MeV/Proj	%	E _{av} (MeV/A)
Neutron	-	-	5.31	590.3	12.58	111.3
Proton	439.00	9.36	1.93	311.0	6.63	160.9
H(1,2)	26.57	0.57	0.113	47.9	1.02	212.7
H(1,3)	10.46	0.22	5.6·10 ⁻²	35.8	0.76	215.1
He(2,3)	60.41	1.29	5.5·10 ⁻²	24.4	0.52	147.8
He(2,4)	182.20	3.88	0.176	111.5	2.38	158.6
Li(3,6)	52.40	1.12	1.2·10 ⁻²	8.1	0.17	112.8
Li(3,7)	38.28	0.82	1.0·10 ⁻²	9.7	0.21	133.0
Be(4,7)	84.26	1.80	$1.0.10^{-4}$	0.03	0.00	48.7
Be(4,9)	29.67	0.63	1.2·10 ⁻³	0.7	0.02	66.9
Be(4,10)	14.30	0.30	1.1·10 ⁻³	1.0	0.02	90.9
B(5,10)	79.29	1.69	1.0·10 ⁻⁵	0.0	0.00	17.7
B(5,11)	147.80	3.15	-	-	-	-
C(6,9)	0.67	0.01	-	-	-	-
C(6,10)	28.58	0.61	-	-	-	-
C(6,11)	205.20	4.37	-	-	-	-
C(6,12)	2150.00	45.82	-	-	-	-
N(7,A)	1.93	0.04	-	-	-	-
O(8,A)	1.37	0.03	-	-	-	-
Pions	2.34	0.05	2.8·10 ⁻²	2.03	0.04	73.8
SUM:	3554.73	75.76		1142.46	24.35	