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The problem

● Four-parameter fit: squared neutrino mass, 
spectrum endpoint, normalizing factor and 
background level.

● Very high correlation between parameters (up 
to 90%).

● Relatively long spectrum calculation time (at 
least triple integral for each parameter set). 
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Fitting algorithms used

● Gradient descent methods (MINUIT MIGRAD, 
FUMILIE).

● Simplex minimization or maximization 
(MINUIT SIMPLEX).

● Stright-ahead function shape analysis (MINUIT 
MINOS).

● Tkachov's quasi-optimal weights.
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Gradient descent

● Iterative procedure.

● The direction of each step is F

● The length of the step is 
determined from second order 
derivatives.

● Iteration ends when F is close 
to zero (more complex criteria 
could be used).
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Градиентные методики
x̄k+1= x̄k − λk⋅

∇ f (xk )

∣∇ f (xk )∣

Метод Ньютона:

λk=
∣∇ f (x k)∣

3

∇ f T⋅∇ 2 f⋅∇ f

x̄k+1= x̄k − [∇2 f (xk)]
−1⋅∇ f (xk)= x̄k − H k⋅∇ f (xk)
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Pros and cons of gradient descent 

● The best choice for Gaussian distributions without strong 
correlations (relatively fast and reliable).

● Implemented in some well developed packages.

● Requires first and sometimes second derivatives.

● Requires explicit or implicit Hessian matrix inversion 
(which in case of strong correlations leads to fit crash).

I found (maybe it is an artifact of Java implementation) that errors generated by 
MIGRAD during fit in some cases are totally wrong, while MINOS errors are 
fine.
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Simplex (Nelder-Mead) optimization

A modern version of direct maximum (minimum) search. 
Uses shrinking polyhedrons in space of parameters.

● Does not require derivatives at all (nearly indifferent to 
correlations).

● Requires tremendous number of function calls.

● Does not have good internal goodness of fit criterion.
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Quasi-optimal weights

The method of quasi-optimal weights is developed by F. Tkachov and is based on well 
known generalized method of moments.

If φ is a function of experimental values X then one can construct the mean value of φ in 
two different ways:

〈φ 〉theor=E [φ(X )] - expected value of φ

〈φ 〉exp=
1
N
∑
i

φ(X i) - experimental mean of φ

〈φ〉theor(θ)=〈φ〉exp( X i)

Since expected value depends on parameter value θ, one can write an equation:

Estimations made by this procedure are automatically unbiased and consistent but not 
necessarily efficient. Efficiency could be acquired by letting φ to depend on “real” 
parameter value θ (witch is unknown). In this case φ(θ, X) is optimal weight. A quasi-
optimal weight could be obtained by calculating φ in point θ

0
 which is close to the real 

value θ.
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КОВ на практике

ϕopt=
∂ L(X∣θtrue)

∂θ
Истинное значение

L=∏
i

1

√(2π)σ
exp(

−(S i (θ)−X i)
2

2σ2 )

С одной стороны, знание распределения величины – дополнительная 
информация. С другой, эта информация неявным образом все равно 
используется в градиентных методах.

θtrue→θ0

Оптимальный вес:

Квазиоптимальный вес:
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КОВ на практике

Eqk=∑
i

S i(θ)−X i

σi
2
(θ0)

⋅
∂ S i(θ)
∂θk θ0

=0

∂ Eqk
∂θl

=∑
i

1

σ i
2
(θ0)

⋅
∂ S i(θ)

∂θl
⋅
∂ S i(θ)

∂θk θ0

θ( p+1)=θ( p)−[∂ Eqk∂θl ]θ( p )

−1

⋅Eq(θ( p))

θ( p+1)=θ( p)−[∂ Eqk∂θl ]θ(0)

−1

⋅Eq (θ( p))

или

Решение:
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Pros and cons of QOW

● Much faster than gradient methods (requires 
less function calls).

● Needs first derivatives, but does not require 
second ones (no Hessian inversion).

● In case starting point is far from maximum, 
needs few runs in order to find the optimal 
weight.
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Comparison of different 
implementations

Some algorithms were implemented in the JAVA program 
(the program is the single framework where different methods 
could be applied to the data in any order).

● Gradient descent using JMINUIT (http://java.freehep.org/freehep-jminuit/).

● Simplex maximization form Michael Thomas Flanagan's 
Java Scientific Library ( http://www.ee.ucl.ac.uk/~mflanaga/java/)

● Quasi-optimal weights (my own implementation).

http://java.freehep.org/freehep-jminuit/
http://www.ee.ucl.ac.uk/~mflanaga/java/
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Comparison table

Function calls Derivative calls

Simplex >300 0

Gradient >30 >30

QOW ~10 ~10*

* - could be lowered to 1 if the alternative procedure is used (in this case number of function calls 
could be about 15).

Number of function and function derivative calls to fit neutrino mass. 
A derivative calculation is in general much more time consuming than 

function calculation.

Conclusions:
● In case time does not matter, it is better to use simplex algorithms.
● For fast calculations QOW proved itself best.
● In case of strong parameter correlation gradient methods such as MIGRAD 
should be used carefully. For MINUIT only MNHESSE or MINOS errors are 
reliable
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